
Fixing the "It works on
my machine!" Problem
with Docker
Jared M. Smith
@jaredthecoder

About Me

— Cyber Security Research Scientist at Oak
Ridge National Lab

— BS and MS in Computer Science from the
University of Tennessee-Knoxville,
current PhD student

— Guest Teacher at Treehouse

— Intro to Big Data

— Intro to Docker

— Basic Web Security

— OWASP Top 10

A Tale of Two Developers

Monday

Wednesday

Friday

Following Monday

This does not have to be you
or your team...

Docker

Docker's Mission

Released in 2013, now
Docker is in use almost
everywhere.

Docker makes packaging
software simple.

Docker makes deploying
software simple.

Docker makes scaling
software simple.

Docker makes securing
software simple.

Docker simplifies the following:

— Packaging software

— Deploying software

— Running complex dependencies like
DBs or isolating entire OSes for testing

— Connecting and scaling microservices

— Building CI/CD pipelines

Background

Containers not VMs

What's a Container?

— Standardized packaging for software and dependencies

— Isolate apps from eachother

— Shares the same OS kernel

— Works for all major Linux distributions and in Windows Server 2016+

Terminology

— Docker Image

— Docker Container

— Docker Engine

— Registry Service

— Docker Hub

— Docker Trusted Registry

Diving In

Basic Docker Commands

$ docker pull nashcash/payment-
gateway:latest

$ docker images

$ docker run –d –p 5000:5000 –-name
payments nashcash/payment-gateway:latest

$ docker ps

$ docker exec -it <container id> /bin/bash

Basic Docker Commands

$ docker stop payments (or <container id>)

$ docker restart/start payments (or
<container id>)

$ docker rm payments (or <container id>)

$ docker rmi nashcash/payment-
gateway:latest (or <image id>)

Basic Docker Commands

$ docker build –t nashcash/payment-gateway:
2.0 .

$ docker image push nashcash/payment-
gateway:2.0

$ docker search node

Dockerfile

FROM node:latest

USER node

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY package.json /usr/src/app/

RUN npm install

COPY . /usr/src/app

EXPOSE 3000

CMD [“npm”, “start”]

— The Dockerfile declares how to deploy
your app or service

Each Dockerfile command
creates a layer of the image.

New and old images share
layers.

Docker copies data on write
enabling fast startup and
minimal disk usage.

By wrapping up app
install and setup into a
Dockerfile, and then
using the Docker CLI,
building and deploying
can be very simple.

Installation

— Docker provides native apps for Mac
and Windows, and via package
managers for Linux

— docker.com/getdocker

— AWS, Microsoft Azure, and Google
Cloud all support Docker as well

Scaling Up

Networking

— Connect multiple containers with
bridge networking:

— $ docker network create -d bridge --
name bridgenet1

— Map ports from container to host:

— $ docker container run -p 8080:80 ...

— Connect multiple hosts with their own
containers with an overlay:

— $ docker network create -d overlay --
name overnet

To dockerize apps + external
services or other apps, use
Docker Compose.

Remember our Dockerfile earlier?

FROM node:latest

USER node

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY package.json /usr/src/app/

RUN npm install

COPY . /usr/src/app

EXPOSE 3000

CMD [“npm”, “start”]

Let's Add MongoDB!

services:
 app:
 build: .
 ports:
 - "3000:3000"
 links:
 - mongo
 mongo:
 image: mongo
 volumes:
 - ./data:/data/db
 ports:
 - "27017:27017"

And Redis!

services:
...
 redis:
 image: redis
 ports:
 - "6379:6379"

Docker Compose

$ docker-compose build

$ docker-compose up

$ docker-compose down

What about running
multiple (even tens or
thousands) Docker
containers across hosts?

You need Orchestration.

The community has you covered

— Docker Swarm

— Apache Mesos

— Kubernetes

— ...

Running In Production

Monitoring Docker

— Stats: docker stats

— Logs: docker service logs

— Prometheus Endpoint (new in Docker
1.13)

— Docker's Remote API: /container/
{container-name|cid}/stats

— cAdvisor: https://github.com/google/
cadvisor

Service Mesh

— linkerd: https://linkerd.io/

— service discovery

— load balancing

— failure handling,

— instrumentation

— routing to all inter-service
communication

— Envoy: https://www.envoyproxy.io/

CI/CD with Docker and Jenkins

*Graphic based on image from Arun Gupta of Couchbase.

Dockerizing React-
Slingshot by Cory House

What We're Working With

— Repo: https://github.com/coryhouse/
react-slingshot

— From the repo: "React + Redux starter
kit / boilerplate with Babel, hot reloading,
testing, linting and a working example app,
all built in"

— We're also going make the app connect
to a backend server that will talk to
MongoDB

Let's begin!

Lessons Learned

— Docker is usually easy to use and can
improve software dev a lot

— Integration, scaling, security, and
testing are all well-explored areas with
Docker

— With Docker, you can't tell your team
that it works for you so it should for
them

— If you do, now you're the kid saying the
"dog ate my homework"

Thank you!

— Follow @jaredthecoder for lots of web
security, devops, and data science

— Checkout my 2-hour Intro to Docker
course on Treehouse
(teamtreehouse.com) for more

— Links to slides and code to be posted
on Github, Twitter, and
jaredthecoder.com/talks

